Quantitative modeling of the neural representation of objects: How semantic feature norms can account for fMRI activation

نویسندگان

  • Kai-min Kevin Chang
  • Tom M. Mitchell
  • Marcel Adam Just
چکیده

Recent multivariate analyses of fMRI activation have shown that discriminative classifiers such as Support Vector Machines (SVM) are capable of decoding fMRI-sensed neural states associated with the visual presentation of categories of various objects. However, the lack of a generative model of neural activity limits the generality of these discriminative classifiers for understanding the underlying neural representation. In this study, we propose a generative classifier that models the hidden factors that underpin the neural representation of objects, using a multivariate multiple linear regression model. The results indicate that object features derived from an independent behavioral feature norming study can explain a significant portion of the systematic variance in the neural activity observed in an object-contemplation task. Furthermore, the resulting regression model is useful for classifying a previously unseen neural activation vector, indicating that the distributed pattern of neural activities encodes sufficient signal to discriminate differences among stimuli. More importantly, there appears to be a double dissociation between the two classifier approaches and within- versus between-participants generalization. Whereas an SVM-based discriminative classifier achieves the best classification accuracy in within-participants analysis, the generative classifier outperforms an SVM-based model which does not utilize such intermediate representations in between-participants analysis. This pattern of results suggests the SVM-based classifier may be picking up some idiosyncratic patterns that do not generalize well across participants and that good generalization across participants may require broad, large-scale patterns that are used in our set of intermediate semantic features. Finally, this intermediate representation allows us to extrapolate the model of the neural activity to previously unseen words, which cannot be done with a discriminative classifier.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Joint Semantic Vector Representation Model for Text Clustering and Classification

Text clustering and classification are two main tasks of text mining. Feature selection plays the key role in the quality of the clustering and classification results. Although word-based features such as term frequency-inverse document frequency (TF-IDF) vectors have been widely used in different applications, their shortcoming in capturing semantic concepts of text motivated researches to use...

متن کامل

Quantitative Modeling of the Neural Representation of Nouns and Phrases Quantitative Modeling of the Neural Representation of Nouns and Phrases

Recent advances in brain imaging and machine learning technologies offer a significant new approach to studying language processing in humans. For the first time, theories regarding how linguistic concepts are processed can be directly validated and grounded by the patterns of brain activity while people comprehend words and phrases. In this dissertation, we used functional magnetic resonance i...

متن کامل

Quantitative modeling of the neural representation of adjective-noun phrases to account for fMRI activation

Recent advances in functional Magnetic Resonance Imaging (fMRI) offer a significant new approach to studying semantic representations in humans by making it possible to directly observe brain activity while people comprehend words and sentences. In this study, we investigate how humans comprehend adjective-noun phrases (e.g. strong dog) while their neural activity is recorded. Classification an...

متن کامل

Neuron Mathematical Model Representation of Neural Tensor Network for RDF Knowledge Base Completion

In this paper, a state-of-the-art neuron mathematical model of neural tensor network (NTN) is proposed to RDF knowledge base completion problem. One of the difficulties with the parameter of the network is that representation of its neuron mathematical model is not possible. For this reason, a new representation of this network is suggested that solves this difficulty. In the representation, th...

متن کامل

Quantitative Modeling of the Neural Representation of Nouns and Phrases

Recent advances in brain imaging and machine learning technologies offer a significant new approach to studying language processing in humans. For the first time, theories regarding how linguistic concepts are processed can be directly validated and grounded by the patterns of brain activity while people comprehend words and phrases. In this dissertation, we used functional magnetic resonance i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • NeuroImage

دوره 56 2  شماره 

صفحات  -

تاریخ انتشار 2011